Frequency monitoring for $50 / 60 \mathrm{~Hz}$ power grids

Monitoring relays - GAMMA series
Window function
110 V to 400 V measuring voltage
Fault latch
Recognition of voltage breakdown
Supply voltage 24 to 240 V a.c./d.c.
2 change over contacts
Width 22.5 mm
Industrial design

Read and understand these instructions before installing, operating or maintaining the equipment.

Danger!
Never carry out work on live parts! Danger of fatal injury! The product must not be used in case of obvious damage. To be installed by an authorized person.

Technical data

1. Functions

Frequency monitoring for $50 / 60 \mathrm{~Hz}$ power grids with adjustable thresholds, timing for ON-Delay and tripping delay separately adjustable and the following functions which are selected by means of rotary switch:

Rated frequency 50 Hz :	
WIN 50 Hz	Monitoring the window between Min and Max
WIN+LATCH 50 Hz	Monitoring the window betwenn Min and Max with fault latch
Rated frequency 60 Hz :	
WIN 60 Hz	Monitoring the window between Min and Max
WIN+LATCH 60Hz	Monitoring the window between Min and Max with fault latch

2. Time ranges

ON-Delay:
Tripping delay (Delay):

Adjustment range		
Os	10 s	
$0.1 \mathrm{~s} \quad 10 \mathrm{~s}$		

3. Indicators

Green LED ON:
Green LED flashes:
Red LED Max/Min ON/OFF:
Red LED Max/Min flashes:
ration of supply voltag
indication of ON-Delay
indication of failure of the corresponding threshold
indication of tripping delay of the corresponding threshold
Red LED UFailure ON/OFF: voltage failure
Yellow LED ON/OFF:
indication of relay output

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 60715
Mounting position: any
Shockproof terminal connection according to VBG 4 (PZ1 required),
IP rating IP20
Tightening torque: max. 1Nm
Terminal capacity:
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end

5. Input circuit

Supply voltage:
24 to 240 V a.c./d.c.

Tolerance:

24 to 240 V d.c.	-20% to $+25 \%$
24 to 240 V a.c.	-15% to $+10 \%$
Rated frequency:	
48 to 400 Hz	24 to 240 V a.c.
16 to 48 Hz	48 to 240 V a.c.
Rated consumption:	$2 \mathrm{VA}(1 \mathrm{~W})$
Duration of operation:	100%
Reset time:	500 ms
Wave form for a.c.:	Sinus
Residual ripple for d.c.:	10%
Drop-out voltage:	$>15 \%$ of the supply voltage
Overvoltage category:	III (in accordance with IEC 60664-1)
Rated surge voltge:	4 kV

6. Output circuit

2 potential free change over contact
Rated voltage: 250 V a.c.
Switching capacitiy: $\quad 750 \mathrm{VA}$ (3A / 250 V a.c.)
If the distance between the devices is less than 5 mm !
Switching capacity: $\quad 1250 \mathrm{VA}$ (5A / 250V a.c.)
If the distance between the devices is greater than 5 mm !
Fusing:
5A fast acting
Mechanical life: $\quad 20 \times 10^{6}$ operations
Electrical life: $\quad 2 \times 10^{5}$ operations
Switching frequency: max. 60/min at 100VA resistive load max. $60 / \mathrm{min}$ at 100VA resistive load
max. $6 / \mathrm{min}$ at 1000 VA resisitve load (in accordance with IEC 60947-5-1)
Overvoltage category: III (in accordance with IEC 60664-1)
Rated surge voltage: 4 kV
7. Measuring circuit

Fusing:
Measured variable
Voltage range:
Tolerance:
Input resistance:
Switching thresholds at $F=$
Max: $\quad 49,49.5,50,50.5,51,52,53,55,57.5,60 \mathrm{~Hz}$
Min: $\quad 40,42.5,45,47,48,49,49.5,50,50.5,51 \mathrm{~Hz}$
Switching thresholds at $F_{N}=60 \mathrm{~Hz}$:
Max: $\quad 59,59.5,60,60.5,61,62,63,65,67.5,70 \mathrm{~Hz}$
Min: $\quad 50,52.5,55,57,58,59,59.5,60,60.5,61 \mathrm{~Hz}$
The thresholds are adjustable by means of rotary switch (Max and Min).
Overvoltage category: III (in accordance with IEC 60664-1)
Rated surge voltage:

Technical data

8. Accuracy

Base accuracy:
Frequency accuracy:
Adjustment accuracy:
Repetition accuracy:
Voltage influence:
Temperature influence:

9. Ambient conditions

Ambient temperature:

Storage temperature:
Transport temperature:
Relative humidity:

Pollution degree:
Vibration resistance:
Shock resistance:
0.5% of F_{N}
-
0.2% of F_{N}
$\leq 0.01 \% /{ }^{\circ} \mathrm{C}$
-25 to $+55^{\circ} \mathrm{C}$
(in accordance with IEC 60068-1)
-25 to $+40^{\circ} \mathrm{C}$
(in accordance with UL 508)
-25 to $+70^{\circ} \mathrm{C}$
-25 to $+70^{\circ} \mathrm{C}$
15% to 85%
(in accordance with IEC 60721-3-3 class 3K3)
3 (in accordance with IEC 60664-1)
10 to 55 Hz 0.35 mm
(in accordance with IEC 60068-2-6)
15 g 11 ms
(in accordance with IEC 60068-2-27)

Functions

Window function (WIN, WIN+LATCH)
When the supply voltage U is applied, the set interval of the tripping delay (ON-Delay) begins. During this period and independent of the measured value the output relay R remains into off-position. The output relay R switches into on-position after the set interval of the tripping delay (ON-Delay) has expired and if the frequency is within the adjusted window. As soon as the frequency leaves the accepted value, the output relay R switches into off-position after the interval of the tripping delay (Delay) has expired.

WIN

The output relay R switches into on-position again after the frequency re enters the accepted value and the tripping delay (ON-Delay) has expired.

WIN+LATCH

The output relay R switches only into on-position again by interrupting and re-applying the supply voltage, provided that the measured frequency is within the adjusted window after the interval of the tripping delay (ON-Delay) has expired.

Recognition of missing measuring voltage

If the measuring voltage is missing (red LED UFailure illuminated) the output relay switches into off-position. When the measured voltage and frequency stays within the set limits for more than the ON-Delay the output relay energises.
If the fault latch is activated (WIN+LATCH) a detected frequency fault will not be reset by interrupting and re-applying the measuring voltage.

Connections

G2FW400VL20:

supply voltage $=$ measuring voltage fault latch activated

G2FW400VL20:
measuring voltage $=400 \mathrm{~V}$ a.c. (phase-phase); supply voltage $=24-240 \mathrm{~V}$ a.c. $/$ d.c. fault latch activated

Connections

G2FW400VL20:
measuring voltage $=300 \mathrm{~V}$ a.c.; supply voltage 24 V a.c./d.c. fault latch activated

Dimensions

