Temperature monitoring of the motor winding

Monitoring relays - GAMMA series
Short circuit monitoring of thermistor line
Zero-voltage latch
Supply voltage selectable via power modules
2 change-over contacts
External reset key connectable
Width 22.5 mm
Industrial design

Technical data

1. Functions

Temperature monitoring of the motor winding (max. 6 PTC) with fault latch, for temperature probes in accordance with DIN 44081, test function with integrated test/reset key and the following additional functions which are selected by means of rotary switch:
$\begin{array}{ll}\text { Off } & \text { Basic function } \\ +\mathrm{K} & \text { Short circuit monitoring of thermistor line } \\ +\mathrm{N} & \text { Zero-voltage latch }\end{array}$
$+\mathrm{K}+\mathrm{N}$ Short circuit monitoring and zero-voltage latch

2. Time ranges

Adjustment range
Start-up suppression time:
Tripping delay:
3. Indicators

Green LED ON: Yellow LED ON/OFF: Red LED ON/OFF:
indication of supply voltage indication of relay output indication of failure

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 60715
Mounting position: any
Shockproof terminal connection according to VBG 4 (PZ1 required),
IP rating IP20
Tightening torque: max. 1 Nm
Terminal capacity:
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end
5. Input circuit

Supply voltage:

$$
12 \text { to } 400 \mathrm{~V} \mathrm{AC}
$$

Tolerance:
Rated frequency:
Rated consumption:
Duration of operation:
Reset time:
Residual ripple for DC:
Drop-out voltage:
Overvoltage category:
Rated surge voltage:
terminals A1-A2 (galvanically separated) selectable via power modules TR2 according to specification of power module according to specification of power module 2VA (1.5W)
100\%
500 ms
$>30 \%$ of the supply voltage
III (in accordance with IEC 60664-1) 4 kV

6. Output circuit

2 potential free change-over contacts
Rated voltage:
Switching capacity:

Switching capacity

Fusing
250 V AC
750VA (3A / 250V AC)
If the distance between the devices is less than 5 mm .
1250VA (5A / 250V AC)
If the distance between the devices is greater than 5 mm .
5A fast acting

Electrical life
Switching frequency:

Overvoltage category:
Rated surge voltage:

7. Measuring circuit

Input: terminals T1-T2
Initial resistance: $<1.5 \mathrm{k} \Omega$
Response value (relay in off-position): $\quad \geq 3.6 \mathrm{k} \Omega$
Release value (relay in on-position): $\quad \leq 1.8 \mathrm{k} \Omega$
Disconnection (short circuit thermistor): <20
Measuring voltage T1-T2: $\quad \leq 2.5 \mathrm{~V}$ DC at $\mathrm{R} \leq 4.0 \mathrm{k} \Omega$ (in accordance with DIN VDE 0660 part 302)
Overvoltage category:
Rated surge voltage:
III (in accordance with EC 60664-1) 4 kV

8. Control contact R

Function:
Loadable:
Line length $\mathrm{R}-\mathrm{T} 2$:
Control pulse length:
Reset:
9. Accuracy

Base accuracy:
Frequency response:
Adjustment accuracy:
Repetition accuracy:
Voltage influence:
Temperature influence:
10. Ambient conditions

Ambient temperature:

Storage temperature:
Transport temperature:
Relative humidity:

Pollution degree
Vibration resistance:

Shock resistance:
$\leq 2.3 \%$
external reset key
no
max. 10 m (twisted pair)
potential free normally open contact, terminals R-T2
$\pm 10 \%$ (of maximum scale value)
-
$\leq 1 \%$
$\leq 0.1 \% /{ }^{\circ} \mathrm{C}$
-25 to $+55^{\circ} \mathrm{C}$
(in accordance with IEC 60068-1)
-25 to $+40^{\circ} \mathrm{C}$
(in accordance with UL 508)
-25 to $+70^{\circ} \mathrm{C}$
-25 to $+70^{\circ} \mathrm{C}$
15% to 85%
(in accordance with IEC 60721-3-3
class 3 K 3)
3 (in accordanc with IEC 60664-1)
10 to 55 Hz 0.35 mm
(in accordance with IEC 60068-2-6)
15 g 11 ms
(in accordance with IEC 60068-2-27)

Functions

No additional function (OFF)
If the supply voltage U is applied (green LED illuminated) and the cumulative resistance of the PTC-circuit is less than $3.6 \mathrm{k} \Omega$ (standard temperature of the motor), the output relays switch into on-position. Pressing the test/reset key under this conditions forces the output relays to switch into off-position. They remain in this state as long as the test/ reset key is pressed and thus the switching function can be checked in case of fault. The test function is not effective using an external reset key. When the cumulative resistance of the PTC-circuit exceeds $3.6 \mathrm{k} \Omega$ (at least one of the PTCs has reached the cut-off temperature), the output relays switch into off-position (red LED illuminated). The output relays again switch into on-position (red LED not illuminated), if the cumulative resistance drops below $1.8 \mathrm{k} \Omega$ by cooling down of the PTC and either a reset key (internal or external) was pressed or the supply voltage was disconnected and re-applied.

Zero voltage latch (N)

If the supply voltage is interrupted and the additional function "Zero voltage latch" (+N or $+\mathrm{N}+\mathrm{K}$) is activated, the actual status of the output relays is stored and they switch into off-position if necessary. If the supply voltage is re-applied the status is restored. If this function is activated a fault can only be cleared by pressing the internal or external reset key.

Short circuit monitoring (K)
In case of a line break or a short circuit of the probe line (cumulative resistance less than 20Ω) the output relays switch into off-position (red LED illuminated) if the additional function "Short circuit monitoring" (+K or $+\mathrm{K}+\mathrm{N}$) is activated.
Under these conditions however the output relays do not change their state, neither by pressing a reset key nor by disconnecting and reapplying the supply voltage.

Connections

Dimensions

